
2026/02/01 20:07 1/8 EhCache

reth - http://theta5912.net/

EhCache
EhCache 설정 및 사용 방법

Configurations

의존성 설정 (gradle)

~/build.gradle 파일에 아래 내용 추가

dependencies {
 implementation 'org.springframework.boot:spring-boot-starter-cache'
 // https://mvnrepository.com/artifact/org.ehcache/ehcache
 implementation group: 'org.ehcache', name: 'ehcache', version:
'3.10.0'
}

어플리케이션 설정

src/main/resources/application.yml 파일에 설정 추가

spring:
 cache:
 jcache:
 config: classpath:ehcache.xml

EhCache 사용 설정을 추가
EhCache를 설정하는 파일 명을 ehcache.xml 로 지정

EHCACHE 설정

src/main/resources/ehcache.xml 파일에 ehcache 설정 내용을 작성

<?xml version="1.0" encoding="UTF-8"?>
<config xmlns='http://www.ehcache.org/v3'>
 <!-- 캐시를 저장할 디렉토리 위치 -->
 <persistence directory="${java.io.tmpdir}/ehcache-data/" />

 <!-- 캐시의 템플릿, 이 템플릿을 각각의 캐시에 적용 -->
 <cache-template name="default">
 <!-- 캐시 유지 시간 관리 -->
 <expiry>
 <tti unit="seconds">30</tti>

Last update: 2022/06/24 15:52 public:computer:ehcache http://theta5912.net/doku.php?id=public:computer:ehcache&rev=1656053554

http://theta5912.net/ Printed on 2026/02/01 20:07

 </expiry>
 <!-- 캐시에 사용할 자원 정의 -->
 <resources>
 <!-- JVM heap 메모리, LRU -->
 <heap unit="MB">10</heap>
 <!-- JVM heap 메모리 외부의 메모리 -->
 <offheap unit="MB">50</offheap>
 <!-- disk 메모리, LFU -->
 <disk persistent="true" unit="GB">1</disk>
 </resources>
 </cache-template>

 <!-- 실제 적용할 캐시 정의 : exampleCache -->
 <cache alias="exampleCache" uses-template="default" >
 <!-- 사용할 키의 타입 정의 -->
 <key-type>java.lang.String</key-type>
 <!-- 캐시할 값의 타입 정의 -->
 <value-type>java.util.ArrayList</value-type>
 </cache>

 <!-- 실제 적용할 캐시 정의 : exampleCache2-->
 <cache alias="exampleCache2" uses-template="default" >
 <!-- 사용할 키의 타입 정의 -->
 <key-type>java.lang.String</key-type>
 <!-- 캐시할 값의 타입 정의 -->
 <value-type>java.lang.String</value-type>
 </cache></config>

EhCache3 에는 defaultCache가 없고 cache-template을 적용하여 사용
cache-template에 정의된 내용은 각 캐시에 적용되고, 각 캐시에서 재설정된 값이 있으면 개별 캐시
에서 정의한 설정을 적용.
참고: 캐시 정책

LRU : 가장 오랫동안 호출 되지 않은 캐시를 삭제
LFU : 호출 빈도가 가장 적은 캐시를 삭제
FIFO : First In First Out, 캐시가 생성된 순서대로 가장 오래된 캐시를 삭제

EHCACHE 사용

Application에 캐시 사용 적용

Application Main 클래스
src/main/java/com/gsc/process/integration/GsxProcessIntegrationRunner.java

package com.gsc.process.integration;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

2026/02/01 20:07 3/8 EhCache

reth - http://theta5912.net/

import org.springframework.cache.annotation.EnableCaching;

@SpringBootApplication
@EnableCaching
public class GscProcessIntegrationRunner {
 public static void main(String[] args) {
 System.out.println("Application for GSC Process Integration:
Started.");
 SpringApplication.run(GscProcessIntegrationRunner.class, args);
 }
}

@EnableCaching: Cache 사용 어노테이션

Model 클래스 작성

@SuperBuilder
@Data
@EqualsAndHashCode(callSuper = false)
@NoArgsConstructor
@AllArgsConstructor
@ApiModel(description = "공통 코드 모델")
public class SampleApiModel implements Serializable {
 @ApiModelProperty("그룹 코드")
 private String grpCd;

 @ApiModelProperty("상세 코드")
 private String dtlCd;

 @ApiModelProperty("코드명")
 private String cdNm;

 @Data
 public static class Criteria {
 @ApiModelProperty("사용여부")
 private String useYn;
 }
}

캐시에 저장되는 모델 클래스는 반드시 Serializable 인터페이스를 구현해야 한다.

Service 클래스 작성

Last update: 2022/06/24 15:52 public:computer:ehcache http://theta5912.net/doku.php?id=public:computer:ehcache&rev=1656053554

http://theta5912.net/ Printed on 2026/02/01 20:07

@Slf4j
@Service
public class SampleApiService {
 public List<SampleApiModel> getAll(SampleApiModel.Criteria criteria)
 {
 SampleApiModel model1 = new SampleApiModel("GRP_CD_000",
"DTL_CD_000", "CD_NM_000");
 SampleApiModel model2 = new SampleApiModel("GRP_CD_001",
"DTL_CD_001", "CD_NM_001");
 SampleApiModel model3 = new SampleApiModel("GRP_CD_002",
"DTL_CD_002", "CD_NM_002");
 SampleApiModel model4 = new SampleApiModel("GRP_CD_003",
"DTL_CD_003", "CD_NM_003");
 SampleApiModel model5 = new SampleApiModel("GRP_CD_004",
"DTL_CD_004", "CD_NM_004");

 List<SampleApiModel> list = new ArrayList<SampleApiModel>();

 list.add(model1);
 list.add(model2);
 list.add(model3);
 list.add(model4);
 list.add(model5);

 return list;
 }

 @Cacheable(cacheNames = "exampleCache", key="#useYn")
 public List<SampleApiModel> getCache(String useYn) throws
InterruptedException
 {
 Thread.sleep(3000); // Code for TEST!

 SampleApiModel model1 = new SampleApiModel("GRP_CD_000",
"DTL_CD_000", "CD_NM_000");
 SampleApiModel model2 = new SampleApiModel("GRP_CD_001",
"DTL_CD_001", "CD_NM_001");
 SampleApiModel model3 = new SampleApiModel("GRP_CD_002",
"DTL_CD_002", "CD_NM_002");
 SampleApiModel model4 = new SampleApiModel("GRP_CD_003",
"DTL_CD_003", "CD_NM_003");
 SampleApiModel model5 = new SampleApiModel("GRP_CD_004",
"DTL_CD_004", "CD_NM_004");

 List<SampleApiModel> list = new ArrayList<SampleApiModel>();

 list.add(model1);
 list.add(model2);
 list.add(model3);
 list.add(model4);
 list.add(model5);

2026/02/01 20:07 5/8 EhCache

reth - http://theta5912.net/

 return list;
 }

 @CacheEvict(cacheNames = "exampleCache", allEntries = true)
 public void evictCache() {
 log.info("delete all caches");
 }
}

@Cacheable(cacheNames = “exampleCache”, key=“#useYn”) : 캐시를 사용할 메서드에 사용하
는 어노테이션.

cacheNames는 ehcache.xml 에 설정한 cache alias와 동일해야 한다.
key는 캐시의 키로 사용되는 값을 spEL로 지정한다.
ehcache.xml에 설정한 exampleCache의 key-type, value-type이 일치해야 한다. 이 예제에서
key는 useYn이 String이므로 key-value는 java.lang.String이며 캐시되는 값은
SampleApiModel의 리스트이므로 value-type은 java.util.ArrayList이다. ArrayList에 저장되는
값은 SampleApiModel인데 이 클래스는 Serializable 인터페이스의 구현체이어야 한다.
이 예제에서는 Thread.sleep() 메서드를 사용하여 DB 쿼리에 걸리는 시간을 시뮬레이트하여
처리.

@CacheEvict(cacheNames = “exampleCache”, allEntries = true) : exampleCache에 저장된 캐시
를 삭제하는 메서드에 사용하는 어노테이션

Repository 클래스 작성

이 예제에서는 DB를 사용하지 않으므로 생략.

Mapper XML 작성

이 예제에서는 DB를 사용하지 않으므로 생략.

Controller 클래스 작성

@Slf4j
@Api("OpenAPI for GSC Process Integration Project")
@RestController
public class SampleApiController {

 @Autowired SampleApiService sampleApiService;

 @GetMapping("/api/sample/return-map-api")
 @ApiOperation(value = "Map 반환 API", notes = "Map을 반환하는 API")
 public Map<String, Object> returnMapApi() {
 Map<String, Object> map = new HashMap<>();

Last update: 2022/06/24 15:52 public:computer:ehcache http://theta5912.net/doku.php?id=public:computer:ehcache&rev=1656053554

http://theta5912.net/ Printed on 2026/02/01 20:07

 map.put("test1", 1);
 map.put("test2", 2);

 return map;
 }

 @GetMapping("/api/sample/cmm-code")
 @ApiOperation(value = "공통 코드 반환", notes = "공통 코드 전체 리스트 반환")
 public List<SampleApiModel> getAllCommonCode(@ApiParam(value = "사용 여
부", required = false, example = "Y") @RequestParam String useYn) {

 return sampleApiService.getAll(null);
 }

 @GetMapping("/api/sample/cache")
 @ApiOperation(value = "캐시 예제", notes = "EHCACHE 사용을 위한 예제")
 public List<SampleApiModel> getCache(@ApiParam(value = "사용 여부",
required = false, example = "Y") @RequestParam String useYn) throws
InterruptedException {
 long start = System.currentTimeMillis();
 List<SampleApiModel> list = sampleApiService.getCache(useYn);
 long end = System.currentTimeMillis();

 log.info("쿼리 수행 시간 : {}ms", end-start);
 return list;
 }

 @GetMapping("/api/sample/evict-cache")
 @ApiOperation(value = "캐시 삭제", notes = "EHCACHE 캐시 삭제 예제")
 public void evictCache() {
 sampleApiService.evictCache();
 return;
 }
}

getCache() : 캐시 사용 예제 서비스 호출 /api/sample/cache
evictCache() : 캐시 삭제 예제 서비스 호출 /api/sample/evict-cache

References

기타 annotation

@CachePut : 메서드 실행에 영향을 주지 않고 캐시를 갱신해야 하는 경우 사용
@Caching : @CacheEvict이나 @CachePut을 여러개 지정해야 하는 경우에 사용
@CacheConfig : 클래스 단위로 캐시설정을 동일하게 하는데 사용

2026/02/01 20:07 7/8 EhCache

reth - http://theta5912.net/

Official EHCACHE site

EHCACHE XML Configuration : https://www.ehcache.org/documentation/3.10/xml.html
EHCACHE Official Main Site : https://www.ehcache.org/

- diskStore : 임시 저장 경로를 설정
 - path : 경로
- sizeOfPolicy : Cache에 저장할 사이즈 정책 설정
 - maxDepth : 최대값
 - maxDepthExceededBehavior : continue: 초과 된 최대 깊이에 대해 경고하지만 크기가 조
정 된 요소를 계속 탐색 /abort: 순회를 중지하고 부분적으로 계산 된 크기를 즉시 반환

- defaultCache : 기본 캐시 설정 (Required)
 - eternal : "true" or "false"
 - timeToIdleSeconds :
 - timeToLiveSeconds :
 - overflowToDisk : "true" / "false"
 - diskPersistent : "true" / "false"
 - memoryStoreEvictionPolicy : "LRU"
- cache : 사용하고자 하는 캐시 설정
 - name: 코드에서 사용할 캐시 name (Required)
 - diskExpiryThreadIntervalSeconds:

maxEntriesLocalHeap 메모리에 생성 될 최대 캐시 갯수 0
maxEntriesLocalDisk 디스크에 생성 될 최대 캐시 갯수 0
eternal 영속성 캐시 설정 (지워지는 캐시인지?)
external = “true”이면, timeToIdleSecond, timeToLiveSeconds 설정이 무시됨
false
timeToIdleSecond 해당 초동안 캐시가 호출 되지 않으면 삭제 0
timeToLiveSeconds 해당 초가 지나면 캐시가 삭제 0
overflowToDisk 오버플로우 된 항목에 대해 disk에 저장할 지 여부 false
diskPersistent 캐시를 disk에 저장하여, 서버 로드 시 캐시를 말아 둘지 설정 false
diskExpiryThreadIntervalSeconds Disk Expiry 스레드의 작업 수행 간격 설정 0
memoryStoreEvictionPolicy 캐시의 객체 수가 maxEntriesLocalHeap에 도달하면, 객체를
추가하고 제거하는 정책 설정

- defaultCache는 반드시 구현해야 할 캐시 (직접 생성하는 캐시에 대한 기본 설정)
- cache는 하나의 캐시를 사용할 때마다 구현
- name 속성은 캐시의 이름을 지정하며, 코드에서는 이 캐시의 이름을 사용하여 사용할 Cache 인스턴
스를 구한다.

@EnableCaching 설정
```java
@Configuration

https://www.ehcache.org/documentation/3.10/xml.html
https://www.ehcache.org/


Last update: 2022/06/24 15:52 public:computer:ehcache http://theta5912.net/doku.php?id=public:computer:ehcache&rev=1656053554

http://theta5912.net/ Printed on 2026/02/01 20:07

@EnableCaching(proxyTargetClass = true, mode = AdviceMode.PROXY)
public class EHCacheConfig {
    @Bean
    public EhCacheManagerFactoryBean ehCacheManagerFactoryBean() {
        EhCacheManagerFactoryBean ehCacheManagerFactoryBean = new
EhCacheManagerFactoryBean();
        ehCacheManagerFactoryBean.setConfigLocation(new
ClassPathResource("config/ehcache.xml"));
        ehCacheManagerFactoryBean.setShared(true);
        return ehCacheManagerFactoryBean;
    }

    @Bean
    public EhCacheCacheManager ehCacheCacheManager(EhCacheManagerFactoryBean
ehCacheManagerFactoryBean) {
        EhCacheCacheManager ehCacheCacheManager = new EhCacheCacheManager();
ehCacheCacheManager.setCacheManager(ehCacheManagerFactoryBean.getObject());
        return ehCacheCacheManager;
    }
}

```

- @EnableCaching Annotation은 <cache:annotation-driven>와 마찬가지로 어노테이션 기
반 캐시를 사용 할 수 있는 설정
- proxyTargetClass : class 기반 프록시를 생성함을 의미 (CGLIB라이브러리에 대한 의존성
필요)
- Mode : 어떤 Advisor 모듈을 선택할지에 대한 설정

EHCache 설정방법 (Spring Framework)
EHCache 설정방법 (Spring Boot)
Cache에 대하여.. (Spring+EHCache)
EHCache (1. 선택 및 특징)
EHCache (2. 사용환경 셋팅)
EHCache (3. 실제 사용)
EHCache를 이용한 캐시 구현 2
[Spring] ehCache2와 달라진 ehCache3 사용
Springboot EhCache 3 - 환경설정부터 self-invocation 처리까지

From:
http://theta5912.net/ - reth

Permanent link:
http://theta5912.net/doku.php?id=public:computer:ehcache&rev=1656053554

Last update: 2022/06/24 15:52

https://jaehun2841.github.io/2018/11/07/2018-11-04-ehcache-config-for-springframework/#ehcache-xml-%EC%9E%91%EC%84%B1
https://jaehun2841.github.io/2018/11/07/2018-11-04-ehcache-config-for-springframework/#ehcache-xml-%EC%9E%91%EC%84%B1
https://jaehun2841.github.io/2018/11/07/2018-11-04-ehcache-config-for-springframework/#ehcache-xml-%EC%9E%91%EC%84%B1
https://jaehun2841.github.io/2018/11/07/2018-11-04-ehcache-config-for-springboot/
https://jaehun2841.github.io/2018/11/07/2018-11-04-ehcache-config-for-springboot/
https://jaehun2841.github.io/2018/11/07/2018-11-04-ehcache-config-for-springboot/
https://jaehun2841.github.io/2018/11/07/2018-10-03-spring-ehcache/#EHCache-%EC%98%88%EC%8B%9C-%EC%BD%94%EB%93%9C
https://jaehun2841.github.io/2018/11/07/2018-10-03-spring-ehcache/#EHCache-%EC%98%88%EC%8B%9C-%EC%BD%94%EB%93%9C
https://jaehun2841.github.io/2018/11/07/2018-10-03-spring-ehcache/#EHCache-%EC%98%88%EC%8B%9C-%EC%BD%94%EB%93%9C
https://velog.io/@dev_osj/zotl
https://velog.io/@dev_osj/zotl
https://velog.io/@dev_osj/EHCache-2.-%EA%B5%AC%ED%98%84%EB%B0%A9%EB%B2%95
https://velog.io/@dev_osj/EHCache-2.-%EA%B5%AC%ED%98%84%EB%B0%A9%EB%B2%95
https://velog.io/@dev_osj/EHCache-3.-%EC%8B%A4%EC%A0%9C-%EC%82%AC%EC%9A%A9
https://velog.io/@dev_osj/EHCache-3.-%EC%8B%A4%EC%A0%9C-%EC%82%AC%EC%9A%A9
https://showallthis.tistory.com/109
https://showallthis.tistory.com/109
https://chati.tistory.com/147
https://chati.tistory.com/147
https://chati.tistory.com/147
https://chati.tistory.com/147
https://prohannah.tistory.com/88
https://prohannah.tistory.com/88
https://prohannah.tistory.com/88
https://prohannah.tistory.com/88
http://theta5912.net/
http://theta5912.net/doku.php?id=public:computer:ehcache&rev=1656053554

	EhCache
	Configurations
	의존성 설정 (gradle)
	어플리케이션 설정
	EHCACHE 설정

	EHCACHE 사용
	Application에 캐시 사용 적용
	Model 클래스 작성
	Service 클래스 작성
	Repository 클래스 작성
	Mapper XML 작성
	Controller 클래스 작성

	References
	기타 annotation
	Official EHCACHE site

