
2026/01/24 20:20 1/31 docker

reth - http://theta5912.net/

docker

Requirements

시스템과 인프라 기초 지식
시스템 기반의 구성 요소; 기능 요구사항(functional requirement), 비기능 요구사항(non-
functional requirement): 신뢰성, 확장성, 운용성, 보안 등, 하드웨어, 네트워크, OS, 미들웨어
클라우드와 온프레미스(on-premises; 자사에서 데이터 센터를 보유하고 시스템 구축부터 운
용까지를 모두 수행하는 형태)
시스템 기반의 구축/운용 흐름

시스템 구축 계획 및 요구사항 정의;1.
시스템 구축 범위 선정
인프라 요구사항 정의
예산 책정
프로젝트 체계화
기존 시스템과의 연계
시스템 마이그레이션 계획

인프라 설계 단계;2.
인프라 아키텍처 설계
네트워크 토폴로지 설계
장비 선택, 조달(클라우드인 경우 서비스 선택)
OS, 미들웨어 선택, 조달(클라우드인 경우 서비스 선택)
시스템 운용 설계
시스템 마이그레이션 설계

인프라 구축 단계; (*표시, 퍼블릭 클라우드에서는 필요 없는 경우가 많다)3.
네트워크 부설*
서버 설치*
OS 셋업*
미들웨어 셋업*
애플리케이션 및 라이브러리 설치
테시트(네트워크 확인, 부하 테스트, 운용 테스트)
시스템 릴리스 및 마이그레이션

운용단계;4.
서버 프로세스, 네트워크, 리소스, 배치 Job 모니터링
데이터 백업 및 정기 유지보수
OS, 미들웨어 버전 업그레이드
애플리케이션 버전 업그레이드
시스템 장애 시 대응
사용자 서포트(헬프데스크)

하드웨어와 네트워크 기초 지식
서버 장비; CPU, 메모리, 스토리지
네트워크 주소; MAC 주소(물리주소/이더넷 주소), IP 주소
OSI 참조 모델과 통신 프로토콜

Last update: 2021/08/08 02:15 public:computer:docker http://theta5912.net/doku.php?id=public:computer:docker&rev=1628356547

http://theta5912.net/ Printed on 2026/01/24 20:20

OSI 7 Layer

OSI 참조 모델 대표 프로토
콜 대표 통신 기기 Descriptions

7계
층(L7) 응용 계층

HTTP, DNS,
SMPT, SSH

방화벽, 로드밸
런서 애플리케이션 특화된 프로토콜 규정

6계
층(L6) 표현 계층 데이터의 저장 형식이나 압축, 문자 인코딩과 같은 데

이터의 표현 형식을 규정

5계
층(L5) 세션 계층

커넥션 확립 타이밍이나 데이터 전송 타이밍을 규정.
애플리케이션 간에 일어나는 요청(request)과 응
답(response)으로 구성

4계
층(L4) 전송 계층 TCP, UDP 전송 오류의 검출이나 재전송을 규정. 데이터를 통신

상대의 노드로 확실히 보내는 역할
3계

층(L3)
네트워크 계

층
IP, ICMP 라우터, L3 스

위치 서로 다른 네트워크 간에 통신을 하기 위한 규정

2계
층(L2)

데이터 링크
계층

Ethernet L2 스위치, 브
리지

동일한 네트워크 안(동일 세그먼트)에 있는 노드 간
의 통신을 규정. MAC 주소로 데이터 전송

1계
층(L1) 물리 계층 리피터 허브

통신 장비의 물리적 및 전기적 특성을 규정. 데이터를
어떻게 전압과 전류의 값으로 할당할지, 케이블이나
커넥터의 모양(RJ) 등을 규정. 트위스트 페어 케이
블(STP/UTP), 100BASE-T, IEEE802.11 등

방화벽; 패킷 필터형, 애플리케이션 게이트웨이 형
라우터/레이어3 스위치; 라우팅 테이블 → 정적 경로(Static Route), 라우팅 프로토콜 → 동적 경
로(Dynamic Route)
Linux 기초 지식
Linux 커널; 디바이스 관리, 프로세스 관리, 메모리 관리

쉘의 종류

쉘의 종류
이름 특징

bash 명령 이력, 디렉토리 스택, 명령 변환 기능, 명령이나 파일명의 자동보완 기능 등을 지원하는 고기능
쉘. 대부분의 Linux 시스템이나 macOS(OS X)에 표준으로 탑재

csh C 언어와 매우 비슷한 쉘로, BSD 계열 OS에서 주로 이용
tcsh csh를 개선한 버전으로 명령이나 파일명 등의 자동보완 기능을 가짐
zsh bash와 호환성이 있는 쉘로, 고속으로 작동하는 것이 특징

Linux 파일 시스템; VFS(Virtual File System)
디렉토리 구성; /bin, /boot, /dev, /etc, /home, /proc, /sbin, /tmp, /usr, /var
보안 기능; 계정에 대한 권한 설정, 네트워크 필터링을 사용한 보안 기능(iptables), SELinux(Security-
Enhanced Linux)
미들웨어 기초 지식
웹서버/웹 애플리케이션 서버; Apache HTTP Server, IIS(Internet Information Services), Nginx, ..
데이터베이스 서버;

RDBMS; MySQL, PostgreSQL, Oracle Database, …
NoSQL; Redis, MongoDB, Apache Cassandra, …

시스템 감시 툴; Zabbix, Datadog, Mackerel, …
인프라 구성 관리 기초 지식
인프라 구성 관리; Chef, Ansible, Puppet, Itamae, … Kubernetes

2026/01/24 20:20 3/31 docker

reth - http://theta5912.net/

지속적 인티그레이션/지속적 딜리버리;
CI(Continuous Integration) 애플리케이션의 코드를 추가 및 수정할 때마다 테스트를 실행하고
확실하게 작동하는 코드를 유지하는 방법; Jenkins, …

Linux 디렉토리 구성

이름 설명

/bin ls 커맨드나 cp 커맨드와 같은 기본 커맨드를 저장하는 디렉토리. 특권 사용자, 일반 사용자 모두 이
용하는 명령들이 배치되어 있음.

/boot Linux 커널 등의 OS의 시작에 필요한 파일을 배치하는 디렉토리. Linux 커널의 정체는 vmlinuz라
는 이름의 파일.

/dev
하드디스크, 키보드, 디바이스 파일을 저장하는 디렉토리. 예를 들어 /dev/had는 하드디스크,
/dev/hda는 IDE 타입 하드디스크, /dev/sda는 SCSI 타입 하드디스크를 나타냄. /dev/tty는 표준입
출력이 되는 단말 디바이스. 또한 '아무 것도 아니다'를 나타내는 /dev/null이라는 특수한 디바이스
도 마련되어 있음. /dev/null은 필요가 없어진 출력을 버릴 때 사용하거나 빈 파일로 사용.

/etc
OS나 애플리케이션이 작동하는 데 필요한 설정 파일이 저장되어 있는 디렉토리. 예를 들어
/etc/hosts는 IP 주소와 도메인명을 연결하는 파일이며, /etc/passwd는 사용자의 비밀번호가 저장
되어 있음. 웹 서버를 시작할 때의 http 데몬 설정 파일도 이 디렉토리 아래에 배치됨.

/home 일반 사용자의 홈 디렉토리. 시스템 이용자가 자유롭게 사용할 수 있는 디렉토리. 독자적인 쉘 설정
파일 등도 여기에 배치될 수 있음. 또한 특권 사용자(root)는 /root를 홈 디렉토리로 사용.

/proc
커널이나 프로세스에 관한 정보가 저장되어 있는 디렉토리. /proc 아래에 있는 숫자 폴더는 프로세
스 ID. 또한 /proc/cpuinfo는 CPU 정보, /proc/partitions는 디스크의 파티션 정보, /proc/version은
Linux 커널의 버전 정보가 저장되어 있음.

/sbin 시스템 관리용 마운트가 저장되어 있는 디렉토리. 예를 들어 mount 커맨드나 reboot 커맨드 등 관
리 커맨드는 /usr/sbin/이나 /usr/local/sbin 등에 배치되는 경우도 있음.

/tmp
일시적으로 사용하는 파일 등을 저장하는 임시 디렉토리. 하드디스크에 저장되어 있는 보통의 파일
처럼 보이지만 /tmp는 보통 tmpfs 파일 시스템을 사용하여 메모리상에 전개되기 때문에 서버를 재
시작하면 사라져 버림.

/usr 각종 프로그램이나 커널 소스가 저장되는 디렉토리. /usr/local은 시스템 관리자가 애플리케이션을
설치하는 장소로 이용.

/var
시스템의 가동과 함께 변화하는 파일을 놓아두는 디렉토리. 예를 들어 /var/log에는 가동 로그,
/var/spool에는 애플리케이션이 임시 파일로 사용하는 스풀이 저장됨. 또한 메일 등의 큐나 프로세
스의 다중 기동을 막기 위한 로그 파일 등도 배치.

컨테이너 기술과 Docker 개요

컨테이너; 호스트 OS 상에 논리적인 구획(컨테이너)을 만들고, 애플리케이션을 작동시키기 위해 필
요한 라이브러리나 애플리케이션 등을 하나로 모아, 마치 별도의 서비인 것처럼 사용할 수 있게 만든
것.
서버 가상화

호스트형 서버 가상화; Oracle VM Virtual Box, VMware VMware Workstation player 등
하이퍼바이저형 서버 가상화; Microsoft Windows Server의 'Hyper-V', Citrix 'XenServer'

Docker; 애플리케이션의 실행에 필요한 환경을 하나의 이미지로 모아두고, 그 이미지를 사용하여 다
양한 환경에서 애플리케이션 실행 환경을 구축 및 운용하기 위한 오픈소스 플랫폼.
https://www.docker.com/
웹 시스템 개발 시 애플리케이션을 제품 환경에서 가동시키기 위해 필요한 요소

애플리케이션의 실행 모듈(프로그램 본체)
미들웨어나 라이브러리군
OS/네트워크 등과 같은 인프라 환경 설정

https://www.docker.com/

Last update: 2021/08/08 02:15 public:computer:docker http://theta5912.net/doku.php?id=public:computer:docker&rev=1628356547

http://theta5912.net/ Printed on 2026/01/24 20:20

Docker 기능;
Docker 이미지를 만드는 기능(Build)
Docker 이미지를 공유하는 기능 (Ship)
Docker 컨테이너를 작동시키는 기능 (Run)

Docker 컴포넌트
Docker Enging; Docker의 핵심 기능
Docker Registry; 이미지 공개 및 공유
Docker Compose; 컨테이너 일원 관리
Docker Machine; Docker 실행 환경 구축
Docker Swarm; 클러스터 관리

Docker의 작동 구조
컨테이너를 구획하는 장치 (namespace); PID namespace, Network namespace, UID
namespace, MOUNT namespace, UTS namespace, IPC namespace
릴리스 관리 장치 (cgroups);
네트워크 구성(가상 브리지/가상 NIC)
Docker 이미지의 데이터 관리 장치; AUFS, Btrfs, Device Mapper, OverlayFS, ZFS

NAT(Network Address Translation); 프라이빗 네트워크 상의 컴퓨터와 인터넷 상의 서버간 통신이
성립되도록 변환하는 기술 글로벌 IP 주소와 프라이빗 IP 주소를 1:1로 변환.
NAPT(Network Address Port Translation) (IP 마스커레이드); 프라이빗 IP 주소와 함께 포트 번호도
함께 변환하는 기술

Getting started docker

설치
작동 확인

hello world
버전 확인 (docker version)
실행 환경 확인 (docker system info)
디스크 이용 상황 (docker system df)

nginx 동작 예제; docker 이미지 다운로드 → nginx 작동 → nginx 작동 확인 → nginx 기동 정지

'hello world' on docker

docker containder run <Docker 이미지명> <실행할 명령>

$ docker containder run ubuntu:latest /bin/echo 'Hello world' # ubuntu 이미
지를 바탕으로 docker 컨테이너를 작성 및 실행한 후 작성한 컨테이너 안에서 "Hello world" 표시
$ docker version # docker 버전, go 언어 버전, os, 아키텍처 등을 확인
$ docker system info # docker 실행 환경의 상세 설정 표시
$ docker system df # docker가 사용하고 있는 디스크의 이용 상황 표시

nginx 작동 예제

$ docker pull nginx # nginx 이미지 다운로드

2026/01/24 20:20 5/31 docker

reth - http://theta5912.net/

$ docker image ls # 다운로드 한 이미지 확인
$ docker container run --name webserver -d -p 80:80 nginx # 이미지를 사용하여
nginx 서버를 가동, 웹 브라우저에서 http://localhost:80 으로 접속하여 작동 확인
$ docker container ps # nginx 서버의 상태를 확인
$ docker container stats webserver # 컨테이너 가동 확인
$ docker stop webserver # 컨테이너 정지
$ docker start webserver # 컨테이너 기동

Commands

이미지 조작

Docker Hub

https://hub.docker.com

이미지 다운로드(docker image pull)

docker hub에서 이미지 다운로드

docker image pull

$ docker image pull [옵션] 이미지명[:태그명]

$ docker image pull centos:7 # CentOS의 이미지 취득
$ docker image pull -a centos # CentOS의 모든 태그 이미지 취득
$ docker image pull gcr.io.tensorflow/tensorflow # TensorFlow의 URL을 지정하여
이미지 취득

이미지 목록 표시(docker image ls)

취득한 이미지의 목록 표시

docker image ls

$ docker image ls [옵션] [리포지토리명]

옵션 설명
-all, -a 모든 이미지를 표시
–digests 다이제스트를 표시할지 말지

https://hub.docker.com

Last update: 2021/08/08 02:15 public:computer:docker http://theta5912.net/doku.php?id=public:computer:docker&rev=1628356547

http://theta5912.net/ Printed on 2026/01/24 20:20

옵션 설명
–no-trunc 결과를 모두 표시
–quiet, -q Docker 이미지 ID만 표시

$ docker image ls

결과

항목 설명
REPOSITORY 이미지 이름
TAG 이미지 태그명
IMAGE ID 이미지 ID
CREATED 작성일
SIZE 이미지 크기

DCT(Docker Content Trust)

$ export DOCKER_CONTENT_TRUST = 1 # DCT 기능의 유효화, 서명 된 이미지를 다운로드 할 때
이미지 작성자의 공개키를 사용하여 이미지가 진짜인지 아닌지 확인. 만일 변조된 경우 그 이미지를 무효
로 만듦. 이 공개키를 Tagging Key라고 함.
$ export DOCKER_CONTENT_TRUST = 0 # DCT 기능의 무효화

이미지 상세 정보 확인(docker image inspect)

이미지 상세 정보 확인

$ docker image inspect centos:7 # centos:7 이미지 상세 정보 확인
$ docker image inspect --format="{{ .Os}}" centos:7 # OS 정보 취득
$ docker image inspect --format="{{ .ContainderConfig.Image }}" centos:7 #
image 정보 취득

결과는 JSON(JavaScrip Object Notation) 형식으로 표시
이미지 ID1.
작성일2.
Docker 버전3.
CPU 아키텍처4.

이미지 태그 설정(docker image tag)

이미지에 표식이 되는 태그를 붙임

docker image tag

<Docker Hub 사용자명>/이미지명:[태그명]

2026/01/24 20:20 7/31 docker

reth - http://theta5912.net/

$ docker image tag nginx alexlevine/webserver:1.0 # alexlevine 사용자명의
webserver 이미지에 1.0의 태그 설정

이미지 검색(docker search)

docker hub에 공개되어 있는 이미지 검색

docker search

docker search [옵션] <검색 키워드>

지정할 수 있는 주요 옵션
옵션 설명
–no-trunc 결과를 모두 표시
–limit n건의 검색 결과를 표시
–fileter=stars=n 즐겨찾기의 수(n 이상)를 지정

$ docker search nginx # Docker Hub에 공개되어 있는 이미지 검색

docker search 명령 결과
항목 설명
NAME 이미지 이름
DESCRIPTION 이미지 설명
STARS 즐겨찾기 수
OFFICIAL 공식 이미지인지 아닌지
AUTOMATED Dockerfile을 바탕으로 자동 생성된 이미지인지 아닌지

이미지 삭제(docker image rm)

작성한 이미지 삭제

docker image rm

docker image rm [옵션] 이미지명 [이미지명]

지정할 수 있는 주요 옵션
옵션 설명
–force, -f 이미지를 강제로 삭제
–no-prune 중간 이미지를 삭제하지 않음

$ docker image rm nginx # nginx 이미지 삭제

Last update: 2021/08/08 02:15 public:computer:docker http://theta5912.net/doku.php?id=public:computer:docker&rev=1628356547

http://theta5912.net/ Printed on 2026/01/24 20:20

docker image prune

사용하지 않은 Docker 이미지 삭제

docker image prune [옵션]

지정할 수 있는 주요 옵션
옵션 설명
–all, -a 사용하지 않은 이미지를 모두 삭제
–force, -f 이미지를 강제로 삭제

Docker Hub에 로그인(docker login)

docker 리포지토리에 업로드하기 위해 docker에 로그인

docker login

docker login [옵션] [서버]

지정할 수 있는 주요 옵션
옵션 설명
–password, -p 비밀번호
–username, -u 사용자명

$ docker login
Username: [등록한 사용자명]
Password: [등록한 비밀번호]
Login Succeeded

이미지 업로드(docker image push)

docker hub에 이미지 업로드

docker image push

docker image push 이미지명[:태그명]

이미지명; <Docker Hub 사용자명>/이미지명:[태그명]

$ docker image push alexlevine/webserver:1.0

Docker Hub에서 로그아웃(docker logout)

docker hub에서 로그아웃

2026/01/24 20:20 9/31 docker

reth - http://theta5912.net/

docker logout

docker logout [서버명]

컨테이너 생성/시작/정지

Docker 컨테이너의 라이프 사이클

컨테이너 생성; docker container create
컨테이너 생성 및 시작; docker container run
컨테이너 시작; docker container start
컨테이너 정지; docker container stop
컨테이너 삭제; docker container rm

컨테이너 생성 및 시작(docker container run)

컨테이너의 생성 및 시작

docker container run

docker container run [옵션] 이미지명[:태그명] [인수]
지정할 수 있는 주요 옵션

옵션 설명
–attach, -a 표준 입력(STDIN), 표준 출력(STDOUT), 표준 오류 출력(STDERR)에 어태치한다.
–cidfile 컨테이너 ID를 파일로 출력한다.
–detach, -d 컨테이너를 생성하고 백그라운드에서 실행한다.
–interactive, -i 컨테이너의 표준 입력을 연다.
–try, -t 단말기 디바이스를 사용한다.

$ docker container run -it --name "test1" centos /bin/cal
 # docker container run; 컨테이너를 생성 및 실행
 # -it; 콘솔에 결과를 출력하는 옵션
 # --name "test1"; 컨테이너 명
 # centos; 이미지명
 # /bin/cal; 컨테이너에서 실행할 명령

$ docker container run -it --name "test2" centos /bin/bash # bash 실행

컨테이너의 백그라운드 실행(docker container run)

docker를 이용하는 경우의 대부분은 컨테이너에 서버 기능을 가지게 해서 실행하는 경우, 대화식이 아닌
백그라운드에서 실행

Last update: 2021/08/08 02:15 public:computer:docker http://theta5912.net/doku.php?id=public:computer:docker&rev=1628356547

http://theta5912.net/ Printed on 2026/01/24 20:20

docker container run

docker container run [실행 옵션] 이미지명[:태그명] [인수]
지정할 수 있는 주요 옵션

옵션 설명
–detach, -d 백그라운드에서 실행
–user, -u 사용자명을 지정

–restart=[no|on-failure|on-failure:횟수n|always|unless-stopped] 명령의 실행 결과에 따라 재시작을 하
는 옵션

–rm 명령 실행 완료 후에 컨테이너를 자동
으로 삭제

$ docker container run -d centos /bin/ping localhost
 # docker container run; 컨테이너를 생성 및 실행
 # -d; 백그라운드에서 실행하는 옵션
 # centos; 이미지명
 # /bin/ping localhost; 컨테이너에서 실행할 명령
fbcdab0e9417.....
$ docker container logs -t fbcdab0e9417 # 컨테이너의 로그 확인

restart 옵션
설정값 설명
no 재시작하지 않는다.
on-failure 종료 스테이터스가 0이 아닐 때 재시작한다.
on-failure:횟수n 종료 스테이터스가 0이 아닐 때 n번 재시작한다.
always 항상 재시작한다.
unless-stopped 최근 컨테이너가 정지 상태가 아니라면 항상 재시작한다.

$ docker container run -it --restart=always centos /bin/bash # 컨테이너를 항상
재시작

컨테이너의 네트워크 설정(docker container run)

컨테이너의 네트워크를 설정

docker container run

docker container run [네트워크 옵션]: 이미지명[:태그명] [인수]
지정할 수 있는 옵션

옵션 설명

–add-host=[호스트명:IP 주소] 컨테이너의 /etc/hosts에 호스트명과 IP 주소
를 정의

–dns=[IP 주소] 컨테이너용 DNS 서버의 IP 주소 지정
–expose 지정한 범위의 포트 번호를 할당
–mac-address=[MAC 주소] 컨테이너의 MAC 주소를 지정
–net=[bridge|none|container:<name|id>|host|NETWORK] 컨테이너의 네트워크를 지정
–hostname, -h 컨테이너 자신의 호스트명을 지정
–publish, -p[호스트의 포트 번호]:[컨테이너의 포트 번호] 호스트와 컨테이너의 포트 매핑

2026/01/24 20:20 11/31 docker

reth - http://theta5912.net/

지정할 수 있는 옵션
옵션 설명
–publish-all, -p 호스트의 임의의 포트를 컨테이너에 할당

$ docker container run -d --dns 192.168.1.1 nginx # 컨테이너의 DNS 서버 지정
$ docker container run -d --mac-address="92:d0:c6:0a:29:33" centos # MAC 주
소 지정
2a4f6cf4da30a...
$ docker container inspect --format="{{ .Config.MacAddress }}" 2a5f
92:d0:c6:0a:29:33
$ docker container run -it --add-host test.com:192.168.1.1 centos # 호스트명
과 IP 주소 정의
$ docker container run -it --hostname www.test.com --add-host
node1.test.com:6 192.168.1.1 centos # 호스트명 설정

–net 옵션의 지정
설정값 설명
bridge 브리지 연결(기본값)을 사용한다.
none 네트워크에 연결하지 않는다.
container:[name|id] 다른 컨테이너의 네트워크를 사용한다.
host 컨테이너가 호스트 OS의 네트워크를 사용한다.
NETWORK 사용자 정의 네트워크를 사용한다.

사용자 정의 네트워크 작성

$ docker network create -d bridge webap-net
$ docker container run --net=webap-net -it centos

자원을 지정하여 컨테이너 생성 및 실행(docker container run)

CPU나 메모리와 같은 자원을 지정하여 컨테이너를 생성 및 실행

docker container run

docker container run [자원 옵션] 이미지명[:태그명] [인수]
지정할 수 있는 주요 옵션

–cpu-shares, -c CPU의 사용 배분(비율)

–memory, -m 사용할 메모리를 제한하여 실행
(단위는 b, k, m, g 중 하나)

–volume=[호스트의 디렉토리]:[컨테이너의 디렉토리], -v 호스트와 컨테이너의 디렉토리를 공유

$ docker container run --cpu-shares=512 --memory=1g centos # CPU 시간의 상대
비율과 메모리 사용량을 지정
$ docker container run -v /Users/alex/webap:/usr/share/nginx/html nginx # 디
렉토리 공유

Last update: 2021/08/08 02:15 public:computer:docker http://theta5912.net/doku.php?id=public:computer:docker&rev=1628356547

http://theta5912.net/ Printed on 2026/01/24 20:20

컨테이너를 생성 및 시작하는 환경을 지정(docker container run)

컨테이너의 환경변수나 컨테이너 안의 작업 디렉토리 등을 지정하여 컨테이너를 생성/실행

docker container run

docker container run [환경설정 옵션] 이미지명[:태그명] [인수]
지정할 수 있는 주요 옵션

옵션 설명
–env=[환경변수], -e 환경변수를 설정한다.
–evn-file=[파일명] 환경변수를 파일로부터 설정한다.
–read-only=[true|false] 컨테이너의 파일 시스템을 읽기 전용으로 만든다.
–workdir=[패스], -w 컨테이너의 작업 디렉토리를 지정한다.
-u, –user=[사용자명] 사용자명 또는 UID를 지정한다.

$ docker container run -it -e foo=bar centos /bin/bash # 환경변수 foo 설정

$ cat env_list # env_list 파일 생성
hoge=fuga
foo=bar

$ docker container run -it --env-file=env_list centos /bin/bash # evn_list
파일로 환경변수의 일괄 설정

$ docker container run -it -w=/tensorflow centos /bin/bash # 작업 디렉토리 설정

가동 컨테이너 목록 표시(docker container ls)

docker 상에서 작동하는 컨테이너의 가동상태를 확인

docker container ls

docker container ls [옵션]
지정할 수 있는 주요 옵션

옵션 설명
–all, -a 실행 중/정지 중인 것도 포함하여 모든 컨테이너를 표시
–filter, -f 표시할 컨테이너의 필터링
–format 표시 포맷을 지정
–last, -n 마지막으로 실행된 n건의 컨테이너만 표시
–latest, -l 마지막으로 실행된 컨테이너만 표시
–no-trunc 정보를 생략하지 않고 표시
–quiet, -q 컨테이너 ID만 표시
–size, -s 파일 크기 표시

$ docker container ls # 컨테이너 목록 표시
$ docker container ls -a -f name=test1 # 컨테이너 목록의 필터링
$ docker container ls -a -f exited=0

2026/01/24 20:20 13/31 docker

reth - http://theta5912.net/

docker container ls 명령 결과
항목 설명
CONTAINDER ID 컨테이너 ID
IMAGE 컨테이너의 바탕이 된 이미지
COMMAND 컨테이너 안에서 실행되고 있는 명령
CREATED 컨테이너 작성 후 경과 시간
STATUS 컨테이너의 상태 (restarting | running | paused | exited)
PORTS 할당된 포트
NAMES 컨테이너 이름

–formate 옵션; 출력 형식의 지정
플레이스 홀더 설명
.ID 컨테이너 ID
.Image 이미지 ID
.Command 실행 명령
.CreatedAt 컨테이너가 작성된 시간
.RunningFor 컨테이너의 가동 시간
.Ports 공개 포트
.Status 컨테이너 상태
.Size 컨테이너 디스크 크기
.Names 컨테이너명
.Mounts 볼륨 마운트
.Networks 네트워크명

$ docker container ls -a --format "{{.Names}}: {{.Status}}" # 컨테이너 목록의
출력 형식 지정
$ docker container ls -a --format "table {{.Names}}\t{{.Status}}\t
{{.Mounts}}" # 컨테이너 목록을 표 형식으로 출력

컨테이너 가동 확인(docker container stats)

docker 상에서 작동하는 컨테이너 가동 상태를 확인

docker container stats

docker container stats [컨테이너 식별자]

$ docker container stats webserver # 컨테이너 가동 확인

docker container stats 명령 결과
항목 설명
CONTAINER ID 컨테이너 식별자
NAME 컨테이너명
CPU % CPU 사용률
MEM USAGE/LIMIT 메모리 사용량/컨테이너에서 사용할 수 있는 메모리 제한
MEM % 메모리 사용률
NET I/O 네트워크 I/O
BLOCK I/O 블록 I/O

Last update: 2021/08/08 02:15 public:computer:docker http://theta5912.net/doku.php?id=public:computer:docker&rev=1628356547

http://theta5912.net/ Printed on 2026/01/24 20:20

docker container stats 명령 결과
항목 설명
PIDS PID(Windows 컨테이너 제외)

* Ctrl + C; 명령 종료

$ docker container top webserver # 프로세스 확인

컨테이너 시작(docker container start)

정지하고 있는 컨테이너 시작

docker container start

docker container start [옵션] <컨테이너 식별자> [컨테이너 식별자]
지정할 수 있는 주요 옵션

옵션 설명
–attach, -a 표준 출력, 표준 오류 출력을 연다.
–interactive, -i 컨테이너의 표준 입력을 연다.

$ docker container start dbb4bbe0f470 # 컨테이너 ID가 dbb4bbe0f470인 컨테이너 시
작

컨테이너 정지(docker container stop)

실행 중인 컨테이너를 정지

docker container stop

docker container stop [옵션] <컨테이너 식별자> [컨테이너 식별자]
지정할 수 있는 주요 옵션

옵션 설명
–time, -t 컨테이너의 정지 시간을 지정(기본값은 10초)

$ docker container stop -t 2 dbb4bbe0f470

docker container kill; 강제적으로 컨테이너를 정지시킬 때

컨테이너 재시작(docker container restart)

컨테이너를 재시작

docker container restart [옵션] <컨테이너 식별자> [컨테이너 식별자]
지정할 수 있는 주요 옵션

옵션 설명
–time, -t 컨테이너의 재시작 시간을 지정(기본값은 10초)

$ docker container restart -t 2 webserver

2026/01/24 20:20 15/31 docker

reth - http://theta5912.net/

docker container run –restart; 컨테이너 안에서 실행하는 명령의 종료 스테이터스(정상 종료되었는
지 아닌지)에 따라 컨테이너를 자동으로 재시작하고 싶은 경우.

컨테이너 삭제(docker container rm)

정지하고 있는 컨테이너를 삭제

docker container rm

docker container rm [옵션] <컨테이너 식별자> [컨테이너 식별자]
지정할 수 있는 주요 옵션

옵션 설명
–force, -f 실행 중인 컨테이너를 강제로 삭제
–volumes, -v 할당한 볼륨을 삭제

$ docker container rm dbb4bbe0f470 # 컨테이너 삭제

컨테이너 중단/재개(docker container pause/docker container unpause)

실행중인 컨테이너에서 작동 중인 프로세스를 모두 중단

docker container pause/docker container unpause

docker container pause <컨테이너 식별자>

$ docker container pause webserver # 컨테이너 중단
$ docker container unpause wbserver # 중단 컨테이너 재개

컨테이너 네트워크

docker 컨테이너 끼리 통신을 할 때는 docker 네트워크를 통해 수행

네트워크 목록 표시(docker network ls)

docker 네트워크의 목록 확인

docker network ls [옵션]
지정할 수 있는 주요 옵션

옵션 설명
-f, –filter=[] 출력을 필터링한다.
–no-trunc 상세 정보를 출력한다.
-q, –quiet 네트워크 ID만 표시한다.

$ docker network ls

Last update: 2021/08/08 02:15 public:computer:docker http://theta5912.net/doku.php?id=public:computer:docker&rev=1628356547

http://theta5912.net/ Printed on 2026/01/24 20:20

필터링에서 이용할 수 있는 키
값 설명
driver 드라이버 지정
id 네트워크 ID
label 네트워크에 설정된 라벨(label=<key> 또는 LAbel=<key>=<value>로 지정한다)
name 네트워크명
scope 네트워크의 스코프(swarm/global/local)
type 네트워크의 타입(사용자 정의 네트워크 custom/정의 완료 네트워크 builtin)

$ docker network ls -q --filter driver=bridge # 네트워크 목록 표시의 필터링

오버레이 네트워크(overlay network); 물리 네트워크 상에서 소프트웨어적으로 에뮬레이트한 네트
워크. 물리 네트워크를 덮듯이 가상 네트워크가 구성된다는 점에서 가상 네트워크라라고도 함. 물리
네트워크의 구조가 은폐되어 그 아래에 있는 물리 계층의 형태나 제어 방식 등을 의식하지 않고 이용
할 수 있다는 것이 특징. 예를 들어 여러 개의 호스트에 걸친 네트워크를 구성할 때 사용. 소프트웨어
로 구성된 네트워크이므로 물리 작업을 수반하지 않고 자유롭게 구성을 변경할 수 있다는 장점.

네트워크 작성(docker network create)

새로운 네트워크 작성

docker network create [옵션] 네트워크
지정할 수 있는 주요 옵션

옵션 설명
–driver, -d 네트워크 브리지 또는 오버레이(기본값은 bridge)
–ip-range 컨테이너에 할당하는 IP 주소의 범위를 지정
–subnet 서브넷을 CIDR 형식으로 지정
–ipv6 IPv6 네트워크를 유효화할지 말지(true/false)
-label 네트워크에 설정하는 라벨

$ docker network create --driver=bridge web-network # web-network라는 이름의
브리지 네트워크 작성
docker network ls --filter driver=bridge # 작성한 네트워크 확인,
filter=bridge

네트워크 연결(docker network connect/docker network disconnect)

docker 컨테이너를 docker 네트워크에 연결/연결 해제 명령

docker network connect/docker network disconnet

docker network connect [옵션] 네트워크 컨테이너
지정할 수 있는 주요 옵션

옵션 설명
–ip IPv4 주소
–ip6 IPv6 주소
–alias 앨리어스명

2026/01/24 20:20 17/31 docker

reth - http://theta5912.net/

지정할 수 있는 주요 옵션
옵션 설명
–link 다른 컨테이너에 대한 링크

$ docker network connect web-network webfront # 네트워크에 대한 연결
$ docker container inspect webfront # 컨테이너 네트워크 확인
$ docker container run -itd --name=webp --net=web-network nginx # 네트워크를
지정한 컨테이너 시작
$ docker network disconnet web-network webfront # 네트워크에 대한 연결 해제

네트워크 상세 정보 확인(docker network inspect)

네트워크 상세 정보를 확인

docker network inspect

docker network inspect [옵션] 네트워크

$ docker network inspect web-network # 네트워크 상세 정보 표시

네트워크 삭제(docker network rm)

docker 네트워크 삭제

docker network rm

docker network rm [옵션] 네트워크

$ docker network rm web-network

가동중인 컨테이너 조작

실제 환경에서 운용할 때 이미 가동 중인 컨테이너의 상태를 확인하거나 임의의 프로세스를 실행시킬 때
하는 조작

가동 컨테이너 연결(docker container attach)

가동 중인 컨테이너에 연결할 때. 연결한 컨테이너를 종료하려면 Ctrl+C, 컨테이너를 시작한 채로 컨테
이너 안에서 움직이는 프로세스만 종료하려면 Ctrl+P, Ctrl+Q 입력.

docker container attach

$ docker container attach sample # 컨테이너에 연결

Last update: 2021/08/08 02:15 public:computer:docker http://theta5912.net/doku.php?id=public:computer:docker&rev=1628356547

http://theta5912.net/ Printed on 2026/01/24 20:20

가동 컨테이너에서 프로세스 실행(docker container exec)

docker container exec

docker container exec [옵션] <컨테이너 식별자> <실행할 명령> [인수]
지정할 수 있는 주요 옵션

옵션 설명
–detach, -d 명령을 백그라운드에서 실행한다.
–interactive, -i 컨테이너의 표준 입력을 연다.
–tty, -t tty(단말 디바이스)를 사용한다.
–user, -u 사용자명을 지정한다.

$ docker container exec -it webserver /bin/bash # 컨테이너에서 bash 실행
$ docker container exec -it webserver /bin/echo "Hello world" # 컨테이너에서
echo 실행

가동 컨테이너의 프로세스 확인(docker container top)

가동 중인 컨테이너에서 실행되고 있는 프로세스 확인

docker container top

$ docker container top webserver # 프로세스 확인

가동 컨테이너의 포트 전송 확인(docker container port)

가동 중인 컨테이너에서 실행되고 있는 프로세스가 전송되고 있는 포트를 확인

docker container port

$ docker container port webserver

주요 Linux 배포판에서의 잘 알려진 포트
번호 TCP/IP 서비스/프로토콜 설명
20 TCP FTP(데이터) 파일 전송(데이터)
21 TCP FTP(제어) 파일 전송(제어)
22 TCP/UDP ssh 시큐어쉘
23 TCP Telnet 원격 액세스
25 TCP/UDP SMTP 메일 전송
43 TCP WHOIS 도메인 정보 검색
53 TCP/UDP DNS 도메인 이름 시스템
80 TCP/UDP HTTP 웹 액세스
88 TCP/UDP Kerberos Kerberos 인증
110 TCP POP3 메일 수신
123 UDP NTP 시간 조정

2026/01/24 20:20 19/31 docker

reth - http://theta5912.net/

주요 Linux 배포판에서의 잘 알려진 포트
번호 TCP/IP 서비스/프로토콜 설명
135 TCP Microsoft RPC Microsoft의 원격 액세스
143 TCP/UDP IMAP2/4 인터넷 메일 액세스
161 TCP/UDP SNMP 네트워크 감시
162 TCP/UDP SNMP 트랩 네트워크 감시(트랩)
389 TCP/UDP LDAP 디렉토리 서비스
443 TCP/UDP HTTPS HTTP의 암호화 통신
465 TCP SMTPS SMTP의 암호화 통신
514 UDP syslog 로그 수집
989 TCP/UDP FTP(데이터) FTP(데이터)의 암호화 통신
990 TCP/UDP FTP(제어) FTP(제어)의 암호화 통신
992 TCP/UDP Telnets Telnet의 암호화 통신
993 TCP IMAPS IMAP의 암호화 통신
995 TCP POP3S POP3의 암호화 통신

컨테이너 이름 변경(docker container rename)

컨테이너 이름 변경

docker container rename

$ docker container rename old new

컨테이너 안의 파일을 복사(docker container cp)

컨테이너 안의 파일을 호스트에 복사

docker container cp

docker container cp <컨테이너 식별자>:<컨테이너 안의 파일 경로> <호스트의 디렉토리 경로>
docker container cp <호스트 파일> <컨테이너 식별자>:<컨테이너 안의 파일 경로>

$ docker container cp webserver:/etc/nginx/nginx.conf /tmp/nginx.conf # 컨테
이너에서 호스트로 파일 복사
$ docker container cp ./test.txt webserver:/tmp/test.txt # 호스트에서 컨테이너
로 파일 복사

컨테이너 조작의 차분 확인(docker container diff)

컨테이너 안에서 어떤 조작을 하여 컨테이너가 이미지로부터 생성되었을 때와 달라진 점(차분)을 확인

docker container diff

docker container diff <컨테이너 식별자>

Last update: 2021/08/08 02:15 public:computer:docker http://theta5912.net/doku.php?id=public:computer:docker&rev=1628356547

http://theta5912.net/ Printed on 2026/01/24 20:20

변경의 구분
구분 설명
A 파일 추가
D 파일 삭제
C 파일 수정

$ docker container diff test

이미지 생성

docker 컨테이너를 바탕으로 docker 이미지 작성

컨테이너로부터 이미지 작성(docker container commit)

컨테이너로부터 이미지 작성

docker container commit

docker container commit [옵션] <컨테이너 식별자> [이미지명[:태그명]]
지정할 수 있는 주요 옵션

옵션 설명
–author, -a 작성자를 지정한다(ex; Alex Levinealex@domain.com)
–message, -m 메시지를 지정한다.
–change, -c 커밋 시 Dockerfile 명령을 지정한다.
–pause, -p 컨테이너를 일시 정지하고 커밋한다.

</panel-body>

$ docker container commit -a "Alex Levine" webserver alexlevine/webfront:1.0
컨테이너로부터 이미지 작성
$ docker image inspect alexlevine/webfront:1.0 # 이미지 상세 정보 확인

컨테이너를 tar 파일로 출력(docker container export)

가동 중인 컨테이너의 디렉토리/파일들을 모아서 tar 파일 만들기

docker container export

docker container export <컨테이너 식별자>

$ docker container export webserver > latest.tar # 파일 출력
$ tar -tf latest.tar # 생성된 tar 파일의 상세 정보 확인
$ tar tf latest.tar | more

tar 파일로부터 이미지 작성(docker image import)

Linux OS 이미지의 디렉토리/파일로부터 docker 이미지 생성

mailto:alex@domain.com

2026/01/24 20:20 21/31 docker

reth - http://theta5912.net/

docker image import

docker image import <파일 또는 URL> | - [이미지명[:태그명]]

docker image import 명령으로 지정할 수 있는 아카이브 파일; tar, tar.gz, tgz, bzip, tar.xz, txz

$ cat latest.tar | docker image import - alexlevine/webfront:1.1 # 이미지 작성
$ docker image ls # 이미지 확인

이미지 저장(docker image save)

docker 이미지를 tar로 저장

docker image save

docker image save [옵션] <저장 파일명> [이미지명]

$ docker image save -o export.tar tensorflow # 이미지 저장 -o 옵션으로 파일명 지정
$ ls -l

이미지 읽어 들이기(docker image load)

tar 이미지로부터 이미지를 읽음

docker image load

docker image load [옵션]

$ docker image load -i export.tar # 이미지 읽음 -i 옵션으로 파일 지정

docker container export ↔ docker container import
docker image save ↔ docker image load

불필요한 이미지/컨테이너를 일괄 삭제(docker system prune)

사용하지 않는 이미지, 컨테이너, 볼륨, 네트워크를 일괄 삭제

docker system prune

docker system prune [옵션]
지정할 수 있는 주요 옵션

옵션 설명
–all, -a 사용하지 않는 리소스를 모두 삭제한다.
–force, -f 강제적으로 삭제한다.

$ docker system prune -a # 불필요한 리소스 삭제

Last update: 2021/08/08 02:15 public:computer:docker http://theta5912.net/doku.php?id=public:computer:docker&rev=1628356547

http://theta5912.net/ Printed on 2026/01/24 20:20

Dockerfile을 사용한 코드에 의한 서버 구축

Dockerfile을 사용한 구성 관리

Dockerfile이란?

Dockerfile의 기본 구문

Dockerfile 작성

Dockerfile의 빌드와 이미지 레이어

Dockerfile로부터 Docker 이미지 만들기

Docker 이미지의 레이어 구조

멀티스테이지 빌드를 사용한 애플리케이션 개발

Dockerfile 만들기

Docker 이미지의 빌드

Docker 컨테이너의 시작

명령 및 데몬 실행

명령 실행(RUN 실행)

데몬 실행(CMD 명령)

데몬 실행(ENTRYPOINT 명령)

빌드 완료 후에 실행되는 명령(ONBUILD 명령)

2026/01/24 20:20 23/31 docker

reth - http://theta5912.net/

시스템 콜 시그널의 설정(STOPSIGNAL 명령)

컨테이너의 헬스 체크 명령(HEALTHCHECK 명령)

환경 및 네트워크 설정

환경변수 설정(ENV 명령)

작업 디렉토리 지정(WORKDIR 명령)

사용자 지정(USER 명령)

라벨 지정(LABEL 명령)

포트 설정(EXPOSE 명령)

Dockerfile 내 변수의 설정(ARG 명령)

기본 쉘 설정(SHELL 명령)

파일 설정

파일 및 디렉토리 추가(ADD 명령)

파일 복사(COPY 명령)

볼룸 마운트(VOLUME 명령)

Docker 이미지 공개

Docker 이미지의 자동 생성 및 공개

Automated Build의 흐름

GitHub에 공개하기

Last update: 2021/08/08 02:15 public:computer:docker http://theta5912.net/doku.php?id=public:computer:docker&rev=1628356547

http://theta5912.net/ Printed on 2026/01/24 20:20

Docker Hub의 링크 설정

Dockerfile의 빌드

Docker 이미지 확인

Docker Registry를 사용한 프라이빗 레지스트리 구축

로컬 환경에 Docker 레지스트리 구축하기

Docker 이미지 업로드

Docker 이미지의 다운로드와 작동 확인

클라우드 서비스를 사용한 프라이빗 레지스트리 구축

Google Container Registry 준비하기

Docker 이미지의 업로드

Docker 이미지의 다운로드와 작동 확인

여러 컨테이너의 운용 관리

여러 컨테이너 관리의 개요

웹 3계층 시스템 아키텍처

영구 데이터의 관리

Docker Compose

웹 애플리케이션을 로컬에서 움직여 보자

Compose 구성 파일의 작성

2026/01/24 20:20 25/31 docker

reth - http://theta5912.net/

여러 Docker 컨테이너 시작

여러 Docker 컨테이너 정지

Docker Compose를 사용한 여러 컨테이너의 구성 관리

docker-compose.yml의 개요

이미지 지정(image)

이미지 빌드(build)

컨테이너 안에서 작동하는 명령 지정(command/entrypoint)

컨테이너 간 연결(links)

컨테이너 간 통신(ports/expose)

서비스의 의존관계 정의(depends_on)

컨테이너 환경변수 지정(environment/env_file)

컨테이너 정보 설정(container_name/labels)

컨테이너 데이터 관리(volumes/volumes_from)

Docker Compose를 사용한 여러 컨테이너의 운용

Docker Compose의 버전 확인

Docker COmpose의 기본 명령

여러 컨테이너의 생성(up)

여러 컨테이너 확인(ps/logs)

Last update: 2021/08/08 02:15 public:computer:docker http://theta5912.net/doku.php?id=public:computer:docker&rev=1628356547

http://theta5912.net/ Printed on 2026/01/24 20:20

컨테이너에서 명령 실행(run)

여러 컨테이너 시작/정지/재시작(start/stop/restart)

여러 컨테이너 일시 정시/재개(pause/unpause)

서비스의 구성 확인(port/config)

여러 컨테이너 강제 정지/삭제(kill/rm)

여러 리소스의 일괄 삭제(down)

멀티호스트 환경에서 Docker 실행 환경 구축

멀티호스트 환경에서 컨테이너 관리의 개요

멀티호스트 환경과 클러스터링

Docker Machine이란?

웹 애플리케이션을 서비스 공개해 보자

Docker 실행 환경 작성

웹 애플리케이션 전개

Docker 실행 환경 삭제

Docker Machine을 사용한 실행 환경 구축

Docker Machine의 기본 명령

실행 환경 작성(create)

실행 환경 목록 표시(ls/status/url)

2026/01/24 20:20 27/31 docker

reth - http://theta5912.net/

실행 환경에 대한 SSH 연결(ssh)

실행 환경 시작/정지/재시작(start/stop/restart)

실행 환경으로부터 파일 다운로드(scp)

실행 환경 삭제(rm/kill)

실행 환경 정보 확인(ip/inspect)

클라우드를 사용한 Docker 실행 환경 구축

클라우드 환경에서 Docker 오케스트레이션하기

분산 환경에서의 컨테이너 운용 관리

퍼블릭 클라우드가 제공하는 매니지드 서비스

Google Cloud Platform의 컨테이너 관련 서비스

Kubernetes의 개요

Kubernetes의 서버 구성

애플리케이션 구성 관리(Pod, ReplicaSet, Deployment)

네트워크 관리(Service)

Label을 사용한 리소스 식별

Kubernetes의 구조

GCP를 사용한 Docker 애플리케이션 개발

애플리케이션 개발 흐름

Last update: 2021/08/08 02:15 public:computer:docker http://theta5912.net/doku.php?id=public:computer:docker&rev=1628356547

http://theta5912.net/ Printed on 2026/01/24 20:20

소스코드 관리(Cloud Source Repositories)

Docker 이미지 빌드(Cloud Container Builder)

GCP를 사용한 Docker 애플리케이션 실행 환경 구축

Kubernetes 클러스터 구축

애플리케이션의 설정 정보 관리(ConfigMap, Secrets)

앱의 전개(Deployment)

서비스 공개(Service)

앱의 버전업(Blue-Green Deployment)

배치 잡 실행(CronJob)

클라우드를 사용한 Docker 실행 환경의 운용 관리

시스템 운용의 기초 지식

가용성 관리

수용성(Capacity) 관리

시스템 감시

GKE를 사용한 Docker 실행 환경의 운용

Kubernetes의 스테이터스 확인

Kubernetes의 Pod 관리

Kubernetes의 노드 관리

2026/01/24 20:20 29/31 docker

reth - http://theta5912.net/

Kubernetes의 리소스 작성/삭제/변경

Kubernetes의 업그레이드/다운그레이드

Stackdriver에서 로그 확인

node docker image

$ docker exec -it node bash

nginx-php-fpm docker image

richarvey/nginx-php-fpm

$ docker run --name ngx-php -d richarvey/nginx-php-fpm

$ docker exec -e 'DOMAIN=theta5912.net' -e 'GIT_EMAIL=alex@theta5912.net' -e
'WEBROOT=/var/www/html' -t ngx-php /usr/bin/letsencrypt-setup

$ docker exec -t -i ngx-php /bin/bash

$ docker exec -e 'DOMAIN=theta5912.net'
$ docker exec -e 'GIT_EMAIL=alex@theta5912.net'
$ docker exec -t ngx-php /usr/bin/letsencrypt-setup (90days)

$ docker exec -t ngx-php /usr/bin/letsencrypt-renew
$ docker exec -e ‘DOMAIN=theta5912.net’ -t ngx-php /usr/bin/letsencrypt-
renew

$ docker start ngx-php

$ docker commit -a “Alex Levine<alex@theta5912.net>” -m “update dokuwiki,
December 29, 2017. Friday” ngx-php

setting the timezone
apk add tzdata
ls /usr/share/zoneinfo

cp /usr/share/zoneinfo/Asia/Seoul /etc/localtime
echo “Asia/Seoul” > /etc/timezone
date

apk del tzdata

Last update: 2021/08/08 02:15 public:computer:docker http://theta5912.net/doku.php?id=public:computer:docker&rev=1628356547

http://theta5912.net/ Printed on 2026/01/24 20:20

in dokuwiki
dokuwiki/inc/init.php 88
date_default_timezone_set("Asia/Seoul");

apk update
apk upgrade
rm -rf /var/cache/apk/*

export DOMAIN=theta5912.net
export GIT_EMAIL=alex@theta5912.net
export WEBROOT=/var/www/html
/usr/bin/letsencrypt-setup

wget http://download.dokuwiki.org/src/dokuwiki/dokuwiki-stable.tgz
tar xvf dokuwiki-stable.tgz --strip 1

cp

host -> container
$ docker cp /path/foo.txt mycontainer:/path/foo.txt

container -> host
$ docker cp mycontainer:/path/foo.txt /path/foo.txt

$ docker run -i -t ---name <container name> -v <host directory>

Google Cloud Platform 사용법

A.1 계정 등록

[1] 등록 시작 [2] 계정 정보 등록

A.2 프로젝트 작성과 삭제

[1] 프로젝트 작성 [2] 프로젝트명 설정 [3] 프로젝트 삭제

2026/01/24 20:20 31/31 docker

reth - http://theta5912.net/

A.3 Cloud Console 사용법

　툴과 서비스 　대시보드

A.4 Cloud Shell 사용법

A.5 Cloud SDK 설치하기

From:
http://theta5912.net/ - reth

Permanent link:
http://theta5912.net/doku.php?id=public:computer:docker&rev=1628356547

Last update: 2021/08/08 02:15

http://theta5912.net/
http://theta5912.net/doku.php?id=public:computer:docker&rev=1628356547

	docker
	Requirements
	컨테이너 기술과 Docker 개요
	Getting started docker
	Commands
	이미지 조작
	Docker Hub
	이미지 다운로드(docker image pull)
	이미지 목록 표시(docker image ls)
	이미지 상세 정보 확인(docker image inspect)
	이미지 태그 설정(docker image tag)
	이미지 검색(docker search)
	이미지 삭제(docker image rm)
	Docker Hub에 로그인(docker login)
	이미지 업로드(docker image push)
	Docker Hub에서 로그아웃(docker logout)

	컨테이너 생성/시작/정지
	Docker 컨테이너의 라이프 사이클
	컨테이너 생성 및 시작(docker container run)
	컨테이너의 백그라운드 실행(docker container run)
	컨테이너의 네트워크 설정(docker container run)
	자원을 지정하여 컨테이너 생성 및 실행(docker container run)
	컨테이너를 생성 및 시작하는 환경을 지정(docker container run)
	가동 컨테이너 목록 표시(docker container ls)
	컨테이너 가동 확인(docker container stats)
	컨테이너 시작(docker container start)
	컨테이너 정지(docker container stop)
	컨테이너 재시작(docker container restart)
	컨테이너 삭제(docker container rm)
	컨테이너 중단/재개(docker container pause/docker container unpause)

	컨테이너 네트워크
	네트워크 목록 표시(docker network ls)
	네트워크 작성(docker network create)
	네트워크 연결(docker network connect/docker network disconnect)
	네트워크 상세 정보 확인(docker network inspect)
	네트워크 삭제(docker network rm)

	가동중인 컨테이너 조작
	가동 컨테이너 연결(docker container attach)
	가동 컨테이너에서 프로세스 실행(docker container exec)
	가동 컨테이너의 프로세스 확인(docker container top)
	가동 컨테이너의 포트 전송 확인(docker container port)
	컨테이너 이름 변경(docker container rename)
	컨테이너 안의 파일을 복사(docker container cp)
	컨테이너 조작의 차분 확인(docker container diff)

	이미지 생성
	컨테이너로부터 이미지 작성(docker container commit)
	컨테이너를 tar 파일로 출력(docker container export)
	tar 파일로부터 이미지 작성(docker image import)
	이미지 저장(docker image save)
	이미지 읽어 들이기(docker image load)
	불필요한 이미지/컨테이너를 일괄 삭제(docker system prune)

	Dockerfile을 사용한 코드에 의한 서버 구축
	Dockerfile을 사용한 구성 관리
	Dockerfile이란?
	Dockerfile의 기본 구문
	Dockerfile 작성

	Dockerfile의 빌드와 이미지 레이어
	Dockerfile로부터 Docker 이미지 만들기
	Docker 이미지의 레이어 구조

	멀티스테이지 빌드를 사용한 애플리케이션 개발
	Dockerfile 만들기
	Docker 이미지의 빌드
	Docker 컨테이너의 시작

	명령 및 데몬 실행
	명령 실행(RUN 실행)
	데몬 실행(CMD 명령)
	데몬 실행(ENTRYPOINT 명령)
	빌드 완료 후에 실행되는 명령(ONBUILD 명령)
	시스템 콜 시그널의 설정(STOPSIGNAL 명령)
	컨테이너의 헬스 체크 명령(HEALTHCHECK 명령)

	환경 및 네트워크 설정
	환경변수 설정(ENV 명령)
	작업 디렉토리 지정(WORKDIR 명령)
	사용자 지정(USER 명령)
	라벨 지정(LABEL 명령)
	포트 설정(EXPOSE 명령)
	Dockerfile 내 변수의 설정(ARG 명령)
	기본 쉘 설정(SHELL 명령)

	파일 설정
	파일 및 디렉토리 추가(ADD 명령)
	파일 복사(COPY 명령)
	볼룸 마운트(VOLUME 명령)

	Docker 이미지 공개
	Docker 이미지의 자동 생성 및 공개
	Automated Build의 흐름
	GitHub에 공개하기
	Docker Hub의 링크 설정
	Dockerfile의 빌드
	Docker 이미지 확인

	Docker Registry를 사용한 프라이빗 레지스트리 구축
	로컬 환경에 Docker 레지스트리 구축하기
	Docker 이미지 업로드
	Docker 이미지의 다운로드와 작동 확인

	클라우드 서비스를 사용한 프라이빗 레지스트리 구축
	Google Container Registry 준비하기
	Docker 이미지의 업로드
	Docker 이미지의 다운로드와 작동 확인

	여러 컨테이너의 운용 관리
	여러 컨테이너 관리의 개요
	웹 3계층 시스템 아키텍처
	영구 데이터의 관리
	Docker Compose

	웹 애플리케이션을 로컬에서 움직여 보자
	Compose 구성 파일의 작성
	여러 Docker 컨테이너 시작
	여러 Docker 컨테이너 정지

	Docker Compose를 사용한 여러 컨테이너의 구성 관리
	docker-compose.yml의 개요
	이미지 지정(image)
	이미지 빌드(build)
	컨테이너 안에서 작동하는 명령 지정(command/entrypoint)
	컨테이너 간 연결(links)
	컨테이너 간 통신(ports/expose)
	서비스의 의존관계 정의(depends_on)
	컨테이너 환경변수 지정(environment/env_file)
	컨테이너 정보 설정(container_name/labels)
	컨테이너 데이터 관리(volumes/volumes_from)

	Docker Compose를 사용한 여러 컨테이너의 운용
	Docker Compose의 버전 확인
	Docker COmpose의 기본 명령
	여러 컨테이너의 생성(up)
	여러 컨테이너 확인(ps/logs)
	컨테이너에서 명령 실행(run)
	여러 컨테이너 시작/정지/재시작(start/stop/restart)
	여러 컨테이너 일시 정시/재개(pause/unpause)
	서비스의 구성 확인(port/config)
	여러 컨테이너 강제 정지/삭제(kill/rm)
	여러 리소스의 일괄 삭제(down)

	멀티호스트 환경에서 Docker 실행 환경 구축
	멀티호스트 환경에서 컨테이너 관리의 개요
	멀티호스트 환경과 클러스터링
	Docker Machine이란?

	웹 애플리케이션을 서비스 공개해 보자
	Docker 실행 환경 작성
	웹 애플리케이션 전개
	Docker 실행 환경 삭제

	Docker Machine을 사용한 실행 환경 구축
	Docker Machine의 기본 명령
	실행 환경 작성(create)
	실행 환경 목록 표시(ls/status/url)
	실행 환경에 대한 SSH 연결(ssh)
	실행 환경 시작/정지/재시작(start/stop/restart)
	실행 환경으로부터 파일 다운로드(scp)
	실행 환경 삭제(rm/kill)
	실행 환경 정보 확인(ip/inspect)

	클라우드를 사용한 Docker 실행 환경 구축
	클라우드 환경에서 Docker 오케스트레이션하기
	분산 환경에서의 컨테이너 운용 관리
	퍼블릭 클라우드가 제공하는 매니지드 서비스
	Google Cloud Platform의 컨테이너 관련 서비스

	Kubernetes의 개요
	Kubernetes의 서버 구성
	애플리케이션 구성 관리(Pod, ReplicaSet, Deployment)
	네트워크 관리(Service)
	Label을 사용한 리소스 식별
	Kubernetes의 구조

	GCP를 사용한 Docker 애플리케이션 개발
	애플리케이션 개발 흐름
	소스코드 관리(Cloud Source Repositories)
	Docker 이미지 빌드(Cloud Container Builder)

	GCP를 사용한 Docker 애플리케이션 실행 환경 구축
	Kubernetes 클러스터 구축
	애플리케이션의 설정 정보 관리(ConfigMap, Secrets)
	앱의 전개(Deployment)
	서비스 공개(Service)
	앱의 버전업(Blue-Green Deployment)
	배치 잡 실행(CronJob)

	클라우드를 사용한 Docker 실행 환경의 운용 관리
	시스템 운용의 기초 지식
	가용성 관리
	수용성(Capacity) 관리
	시스템 감시

	GKE를 사용한 Docker 실행 환경의 운용
	Kubernetes의 스테이터스 확인
	Kubernetes의 Pod 관리
	Kubernetes의 노드 관리
	Kubernetes의 리소스 작성/삭제/변경
	Kubernetes의 업그레이드/다운그레이드
	Stackdriver에서 로그 확인
	node docker image
	nginx-php-fpm docker image

	Google Cloud Platform 사용법
	A.1 계정 등록
	A.2 프로젝트 작성과 삭제
	A.3 Cloud Console 사용법
	A.4 Cloud Shell 사용법
	A.5 Cloud SDK 설치하기

